	Emmeller	n am 4 Nia s					F	Coo4 N	·				
	Enrolln	nent No: _							o: SIT				
	C.U.SHAH UNIVERSITY Summer Examination-2018												
	Subject	Subject Name: Fundamental Electrical Engineering											
	Subject Code: 4TE01FEE1					Branch: B.Tech (All)							
	Semeste			23/03/	2018				To 05:3		Marks: 70		
	 Instructions: (1) Use of Programmable calculator & any other electronic instrument is prohibited. (2) Instructions written on main answer book are strictly to be obeyed. (3) Draw neat diagrams and figures (if necessary) at right places. (4) Assume suitable data if needed. 								hibited.				
Q-1		Attempt t	the follow	ing qu	estions:							(14)	
	1)	The unit of	of an energ	gy is									
		A) Joule B) Watt C) Joule/seconds D) None of the above											
	2)	The resistance of metalic conductor is inversly propotional to its											
		A) Le	ngth B	3) Squa	re of the l	ength	C)	Area	D) S	quare o	f the Area		
	3) The unit of permittivity is												
		A) metre/	Farad	B) F	arad/metr	e	C) Fa	ırad	D) Fara	id-metre	e		
	4) When four capacitors of 1 μF are connected in parallel , the resultant capacitance will be									capacitance			
		Α) 0.5 μF	B) 2 J	μF	C) 0.25	иF	D) 4 μl	F					
	5)	5) A capacitor stores 2 μ C charge at 10 V, its capacitance is											
	6)	A) 2 I Flux of a		•	C) 5 µ is analogo								

B) Tesla

A) Electric Field Intensity B) Current density C) Electric current D) Resistance

C) Weber

D) Ampere-Tesla

The unit of reluctance is _____

A) Ampere-Turns/Weber

7)

	8)	In case of sinusoidal voltage if V_{rms} is the rms voltage and V_m is the maximum voltage, then $V_{rms} =$											
		A) V_m		C) $\frac{3V_m}{2}$	D) $\frac{V_m}{\sqrt{2}}$								
	9)	The relation between angular velocity and frequency of an alternating quantity is given by											
		A) $\omega = \frac{f}{2\pi}$	B) $\omega = 2\pi f$	C) $\omega = \frac{2\pi}{f}$	D) $\omega = \frac{2f}{\pi}$								
	10)	If the frequency of an alternating current is 200 kHz, its time period will be											
		A)10μs	B) 20µs	C) 15µs	D) 5μs								
	11)	In a series R-L-C circuit, at resonance current is maximum.											
		A) True	B) False										
	12)	A circuit of with unity power factor behaves as circuit.											
		A) A resistive	B) An inductiv	re C) A capaci	tive D) None of the above								
	13)	A transformer having 1000 primary turns is connected to a 250 V AC supply. For a											
		secondary voltage of 400 V, the number of secondary turns should be											
		A) 400	B) 250	C) 1600	D) 1250								
14) For a step down transformer, transformation ratio K is													
		A) >1	B) =1	C) = 0	D) < 1								
Attem	pt any	four questions from	n Q-2 to Q-8										
Q-2	(a)	Attempt all questions Explain the effects of temperature on resistance of pure metals, alloys, insulators											
		and semiconductors.											
	(b)	Derive an expression for 'n' number of resistances connected in parallel. Give the											
		advantages of parallel connection.											
Q-3		Attempt all questions											
	(a)	State Faraday's first law and second law of electromagnetic induction. Derive the											
		equation of induced emf $e = N \frac{d\phi}{dt}$. where N= Number of turns in a coil, ϕ = flux in											

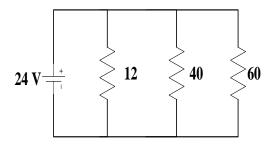
the coil.

Derive the mathematical expression for co-efficient of coupling $K = \frac{M}{\sqrt{L_1 L_2}}$ for magnetically coupled coils. Where L_1 = self-inductance of coil 1, L_2 = self-inductance of coil 2, and M=mutual inductance between two coils

Q-4 Attempt all questions

(14)

- (a) Derive an expression for 'n' number of capacitance connected in series.
- **07**


07

(b) The total capacitance of two capacitors is 0.03 Farad when joined in series and 0.16 Farad when connected in parallel. Find the capacitance of each capacitor

Q-5 Attempt all questions

(14)

- (a) Obtain an expression for the equivalent delta network resistance for a given starnetwork
- (b) For the circuit given below, find its equivalent resitance and current through each resistance.

Q-6 Attempt all questions

(14)

(a) Explain the following sinusoidal function terminologies.

07

- i) Amplitude
- ii) Instantaneous Value
- iii) Time period and Frequency
- (b) An alternating emf is represented by $e = 200 \sin 314t$ Volt. Determine

07

- i) Maximum Value
- ii) Frequency
- iii) Time Period
- iv) Angular Frequency

Q-7 Attempt all questions

(14)

- (a) For a three phase star connected balanced system, derive the relation between
- 07

- i) Phase Voltage and Line Voltage
- ii) Phase Current and Line Current

(b) Derive the relationship between the voltage and current for purely resistive AC circuit. Draw the waveforms and phasor for voltage and current.

Q-8 Attempt all questions (14)

- (a) For a series RLC circuit, derive the equation for series resonance $\mathbf{07}$ frequency $f = \frac{1}{2\pi\sqrt{LC}}$.
- (b) Derive the emf equation $e = 4.44 \, fN \phi_m$ for a single phase transformer where f= 07 frequency of supply, N= number of turns either primary or secondary side, $\phi_m =$ maximum flux in the core.

